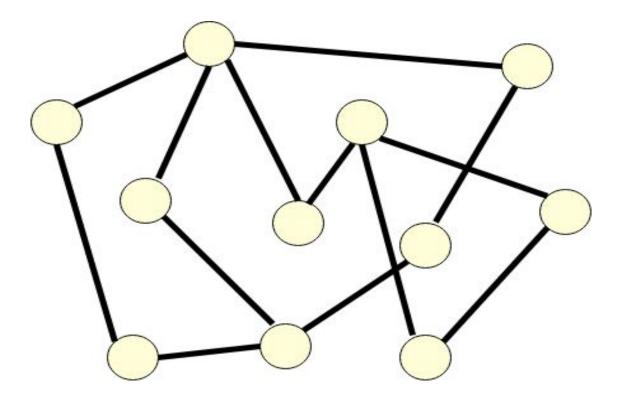


Graph Representation Learning

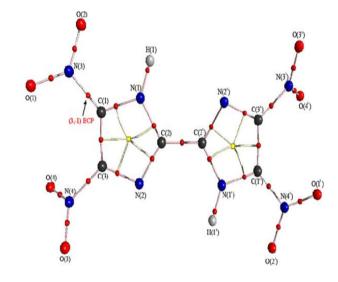
Kobby Panford-Quainoo <u>kpanford-quainoo@aimsammi.org</u> https://panford.github.io

Overview

- Graph-structured data
- Graph Neural Networks
- Applications



Graphs - Where we find them...

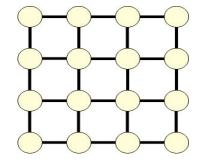


Social Media

Inter-connected devices on internet

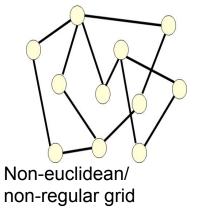
Molecular bonds

- Euclidean graph-data has regular/ periodic structure
 - \circ $\,$ Eg. Images, videos, time series $\,$
- Discrete, Non-Euclidean data structure



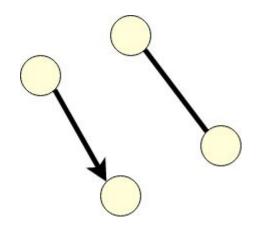
Euclidean/regular grid

- Euclidean graph-data has regular/ periodic structure
 - \circ $\;$ Eg. Images, videos, time series
- Discrete, Non-Euclidean data structure
 - Eg. social networks, molecular structure

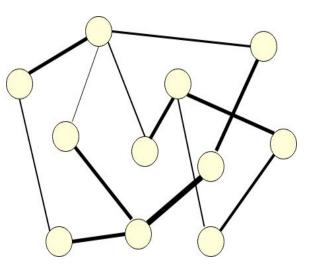


- Discrete, Non-Euclidean data structure
- Key features are;
 - Nodes
 - Node features

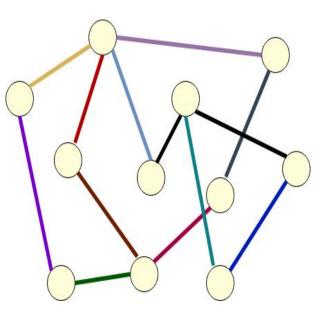
- Discrete, Non-Euclidean data structure
- Key features are;
 - Nodes
 - Node features
 - Edges (directed or undirected)



- Discrete, Non-Euclidean data structure
- Key features are;
 - Nodes
 - Node features
 - Edges (directed or undirected)
 - Edge weights
 - Edge features



- Discrete, Non-Euclidean data structure
- Key features are;
 - Nodes
 - Node features
 - Edges (directed or undirected)
 - Edge weights
 - Edge features
 - Edge types etc



Graphs - More Formally

A simple graph is given by: $\mathcal{G} = (\mathcal{V}, X, A, \mathcal{E})$

Where $\gamma \rightarrow$ set of nodes/ vertices, X \rightarrow node features

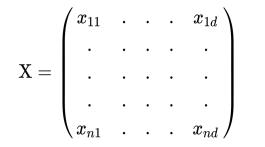
 $\mathcal{E} \rightarrow$ set of edges weights, A \rightarrow Adjacency matrix

Assuming a real-valued feature matrix X for each node $v \in \mathcal{V}$

Adjacency Matrix -

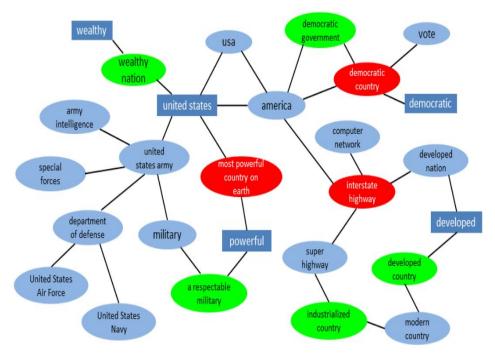
A simple binary matrix -

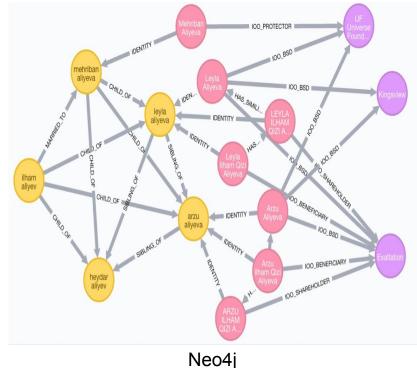
Entry e_{ij} is 1 if nodes are connected and 0 otherwise



 $\mathrm{A}=egin{pmatrix} 0&1&0&0&1&0\ 1&0&1&0&1&0\ 0&1&0&1&0&0\ 0&0&1&0&1&1\ 1&1&0&1&0&0\ 0&0&0&1&0&0\ \end{pmatrix}$

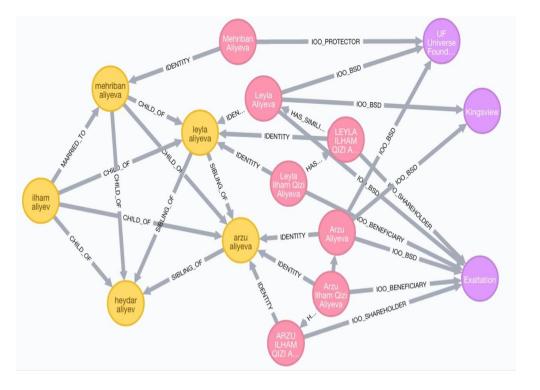
Knowledge Graphs





Generated by ConceptNet

Knowledge Graphs



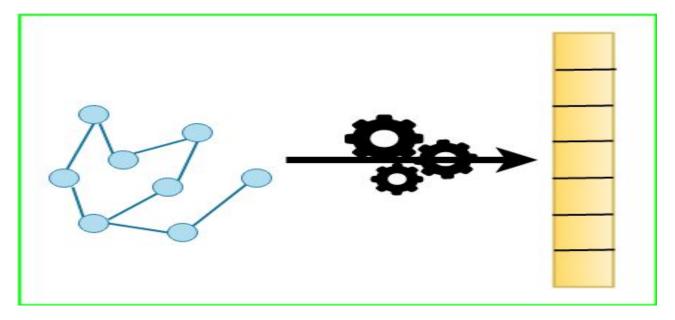
- Fact triplets $(h, r, t) \rightarrow$ head entity, relation, tail entity
- Symmetry is critical (marriage is symmetric, "is a capital of" is not)
- Usually incomplete → missing links needs to be completed
- We need embedding methods to learn the KG structure and to predict missing links

Main Downstream Tasks

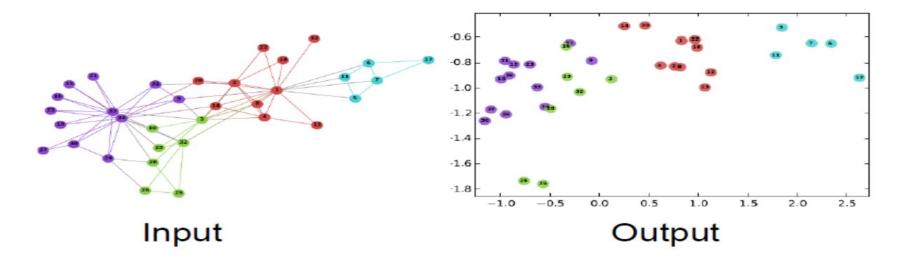
- Node/ Graph Classification Label nodes/entire graph that were not labeled before in a typical semi-supervised setting
- Link Prediction Predict links between nodes
- Node Clustering/ Community Detection Detect clusters of nodes in graph
- **Graph Generation** Generate a new graph

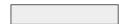
What we want

Priori: Learn Good Embeddings for better model



Zachary's Karate Club network:





Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Fundamental Questions

Priori: Learn Good Embeddings for better model

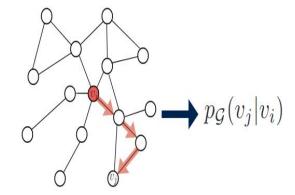
How to encode the graph structure into machine learning models;

- Leveraging a node's *local or global neighbourhood structure* into a feature vector for **node classification**
- Encoding *pairwise information* between nodes for **link prediction**

Classical Rep. Approaches

- Random walks
 - DeepWalk
 - Node2vec
 - LINE (Large-scale Information Network Embeddings)
 - HARP (Random-walk embeddings via graph pre-processing)
- Neighborhood autoencoder and aggregation
 - Deep Neural Graph Representations (DNGR)
 - Structural Deep Network Embeddings (SDNE) etc.

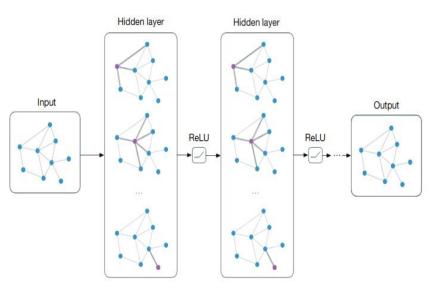
- Transductive learning
- No parameter sharing
- No feature learned representation



Hamilton, 2018

Graph Neural Networks

- 1. Simply a family of deep learning/ neural network methods applied on graphs
- 2. Many tricks and hacks in NN applies
- ReLU activation
- Graph Pooling
- Stacking layers for hierarchical feature learning
- Negative Sampling
- Subsampling
- 3. Many idea "Message passing"



Graph Neural Networks

- Graph Convolutional Networks
- Graph Attention Networks
- Graph Recurrent Networks
- Graph Autoencoder
- Variational Graph Autoencoder

Graph Convolutional Networks (GCN) Kipf & Welling (ICLR 2017)

- Permutation invariance
- Weight shared between layers
- Linear complexity O(E)

$$\begin{array}{ll} \textbf{Update} \\ \textbf{rule:} \quad \mathbf{h}_i^{(l+1)} = \sigma \left(\mathbf{h}_i^{(l)} \mathbf{W}_0^{(l)} + \sum_{j \in \mathcal{N}_i} \frac{1}{c_{ij}} \mathbf{h}_j^{(l)} \mathbf{W}_1^{(l)} \right) \end{array}$$

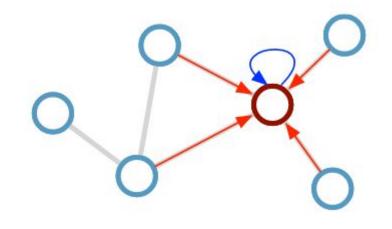


Illustration from Kipf's slides

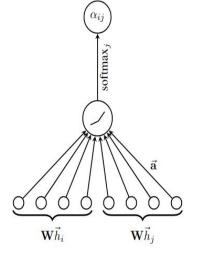
Graph Attention Networks

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio

Pay attention to the most influential nodes

• Computes attention vector $\boldsymbol{\alpha}$ that weighs every neighboring node by importance

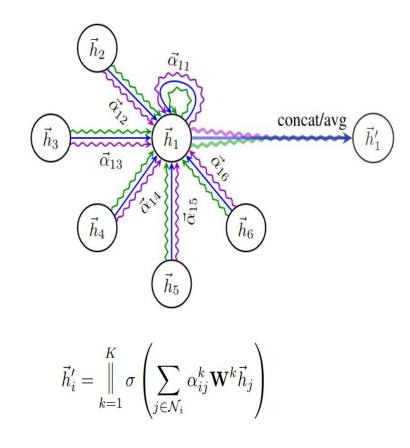
$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)}$$

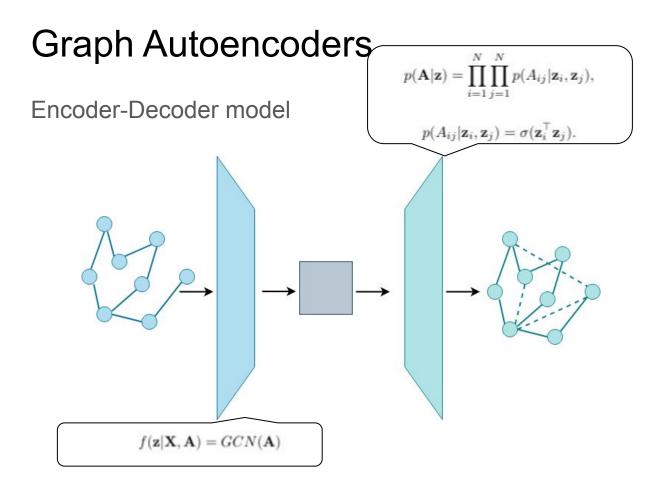


Graph Attention Networks

Pay attention to the most influential nodes

- Computes attention vector \alpha that weighs every neighboring node by importance
- Multi-head attention computes and concatenates k independent attention mechanisms.
- If final layer, we average out

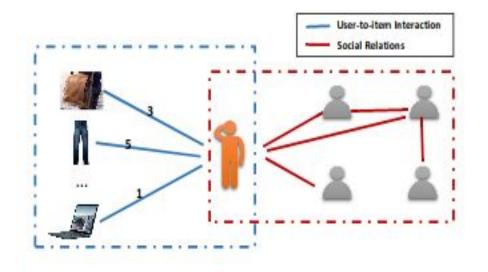




Applications

Graph Neural Networks for Social Recommendation

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin



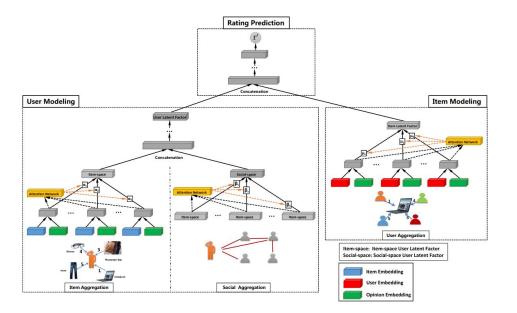
Two parts graph;

user-item graph (Numbers denotes rating)

• User-user social graph

Graph Neural Networks for Social Recommendation

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin



Separately model hidden state;

- User-item interaction Item Aggregation (IA)
- User-user interaction Social aggregation (SA)

Feed concatenated state representation from IA and SA into MLP and predict *rating*

Multi-Agent Game Abstraction via Graph Attention Neural Network

Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, Yang Gao

3 Our Method

In this section, we propose a novel game abstraction approach based on two-stage attention mechanism (G2ANet). Based on the mechanism, we propose two novel MARL algorithms (GA-Comm and GA-AC).

G2ANet: Game Abstraction Based on Two-Stage Attention

We construct the relationship between agents as a graph, where each node represents a single agent, and all nodes are connected in pairs by default. We define the graph as Agent-Coordination Graph.

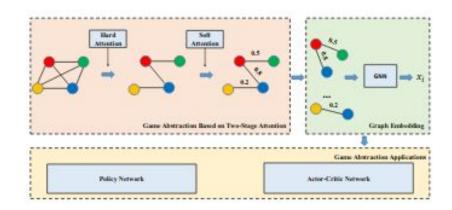


Figure 1: Game Abstraction based on two-stage attention mechanism and Graph Neural Network (GNN).

Bilateral Trade Modeling with GNN

Kobby Panford-Quainoo, Avishek Joey Bose, Michael Defferrard

Predict if any two countries would trade

•	Data Bilateral trade data, Countries profile information	Feature	Notation	Size	Representation
•	 Tasks Node Classification Predict income levels of countries High, Upper-middle, Lower-middle, Low Link Prediction 	nodes node features edges edge weights node labels	V X A E Y	111 38 476 476 4	countries population etc. ¹ trade indicator net trade val (USD) income group

Others

GCap:Graph-based Automatic Image Captioning --- Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, Pinar Duygulu

MolGAN: An implicit generative model for small molecular graphs --- Nicola De Cao Thomas Kipf

Convolutional Networks on Graphs for Learning Molecular Fingerprints -

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gomez-Bombarelli, Timothy Hirzel, Alan Aspuru-Guzik, Ryan P. Adams

GNN Toolkits

Datasets:

- Cora
- Citeseer
- PubMed
- TU Dataset
- Protein interaction dataset

Python Libraries

- DeepGraph Library (DGL)
- Pytorch-Geometric
- Pytorch-BigGraph

Open Graph Benchmark:

A collection of datasets, benchmarks and evaluators for machine learning on graphs

https://ogb.stanford.edu/

Reference Materials

Ziwei Zhang, Peng Cui and Wenwu Zhu. Deep Learning on Graphs: A survey

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, Xavier Bresson. **Benchmarking Graph Neural Networks**

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun. **Graph Neural Networks: A Review of Methods and Applications**

William L. Hamilton, Rex Ying, Jure Leskovec. **Representation Learning on Graphs: Methods and Applications**