

BILATERAL TRADE MODELING WITH GRAPH NEURAL NETWORKS

Kobby Panford-Quainoo African Institute for Mathematical Sciences, Kigali, Rwanda kpanford-quainoo@aimsammi.org

5

@panfordkobby

Avishek Joey Bose McGill University, MILA Montreal, Canada joey.bose@mail.mcgill.ca

@bose_joey

Michaël Defferrard

École Polytechnique Fédérale de Lausanne Lausanne, Switzerland <u>michael.defferrard@epfl.ch</u>

@m_deff

Our work

- Data-driven and graph representation learning approach to modeling bilateral trade between countries
- Predicting potential trade partners \rightarrow link prediction problem
- Classifying countries into income levels \rightarrow node classification problem
 - Income Levels
 - High
 - Upper-middle
 - Lower-middle
 - Lower

Gravity model

Gravity Model

 $F_{ij} = M rac{GDP_i \cdot GDP_j}{D_{ij}}$

 $\ln F_{ij} = c_0 + c_1 \ln GDP_i + c_2 \ln GDP_j + c_3 \ln D_{ij} + \underline{c_4 d + c_5 P_{ij} + \epsilon_{ij}}$

- *c*_k hand-engineered constants
- P_{ij} political influence term
- ϵ_{ij} error correction term
- d cultural influence

Gravity Model

$$F_{ij} = M rac{GDP_i \cdot GDP_j}{D_{ij}}$$

$$\ln F_{ij} = c_0 + c_1 \ln \underline{GDP_i} + c_2 \ln \underline{GDP_j} + c_3 \ln \underline{D_{ij}} + \underline{c_4d + c_5P_{ij} + \epsilon_{ij}}$$

• c_k - hand-engineered constants Difficult

Gravity Model

$$F_{ij} = M rac{GDP_i \cdot GDP_j}{D_{ij}}$$

$$\ln F_{ij}=c_0+c_1\ln GDP_i+c_2\ln GDP_j+c_3\ln D_{ij}+\underline{c_4d+c_5P_{ij}+\epsilon_{ij}}$$

Not informed by previous trade information /

 Past trade information between countries may contribute to their income level prediction

Data and Representation

Data sources: The United Nations Comtrade Database (UNCD), Kaggle

UNCD: Reporter-partner trade statistics

- imports and exports
- trade value in USD

Kaggle: Countries profile

- financial
- geographical
- income level

Data and Representation

Feature	Notation	Size	Representation
nodes	\mathcal{V}	111	countries
Node features	X	38	ie. population
Edges	A	476	trade indicator
Edge weights	ε	476	net trade value (USD)
Node labels	\mathcal{Y}	4	Income levels

Table 2: summary of data features and representation

Tasks

• Trade partner prediction:

• Income level prediction:

Tasks and Exp'tal setup

- Country Classification: Predicting the income levels of countries
 - Graph Convolutional Network (GCN)
 - Attention-based Graph Neural Networks (AGNN)
 - Graph Attention Network (GAT)
 - Chebyshev Convolution Networks (ChebNet)
- **Trade Partner prediction**: Predicting potential trade partners in trade graph
 - Graph Autoencoder (GAE)
 - Variational Graph Autoencoder (VGAE)

Tasks and Exp'tal setup

- Baselines -
 - Multilayer perceptron (MLP)
 - Logistic regression

Results

	GCN	ChebNet	GAT	AGNN	Linear	Logistic Reg
Test Accuracy	0.6812	0.6436	0.6158	0.6003	0.6491	0.5758

Table 3: Mean node classification results, 1200 epochs, 100 runs

	GAE	VGAE
AUC	0.9840	0.9888
Average Precision	0.9835	0.9896

Table 4: Results for link prediction task

Results - Node classification

Fig 1: Model performance on node classification averaged over 100 runs

Results - Link Prediction

Fig 2: AUC and AP scores on reconstruction with (a) GAE (b) VGAE

Conclusion

- Here, we encourage a graph representation learning approach to trade partner prediction and income level classification of countries.
- We use historical trade data to construct a graph for active trade relationship between countries.
- Up to 98% accuracy on predicting trading partners and 68% on income level classification
- One future direction is to consider a dynamic graph instead of a static one
 - How *trade activities* evolve with time -- temporal prediction of *edges* between countries
 - How *income levels* of countries change with time

Thank You

References

James E Anderson. The gravity model: Annual review of economics. 2011

Alan Deardorff. Determinants of bilateral trade: Does gravity work in a neoclassical world? The Regionalization of the World Economy, pp. 7–32, 1998. doi: <u>https://doi:10.3386/w5377</u>

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds , 2019

Elhanan Helpman, Marc Melitz, and Yona Rubinstein. Estimating Trade Flows: Trading Partners and Trading Volumes*. The Quarterly Journal of Economics, 123(2):441–487, 05 2008. ISSN 0033-5533. doi: 10.1162/qjec.2008.123.2.441. URL https://doi.org/10.1162/gjec.2008.123.2.441.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR abs/1412.6980, 2014 **Patrick Steiner. Determinants of bilateral trade flows**, 2015