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Our work

● Data-driven and graph representation learning approach to modeling bilateral 

trade between countries

● Predicting potential trade partners →  link prediction problem

● Classifying countries into income levels → node classification problem
○ Income Levels

■ High

■ Upper-middle

■ Lower-middle

■ Lower
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Motivation I

GDP of country i

GDP of country j

Geographical distance (i, j)

constant
Trade flow (i, j)
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Gravity model



Motivation I

●   - hand-engineered constants
●   - political influence term
●   - error correction term
●   - cultural influence
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Gravity Model



Motivation I

●   - hand-engineered constants     Difficult 
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Gravity Model



Motivation I
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Not informed by previous trade  information ❗

Gravity Model



Motivation II

● Past trade information between countries may contribute to their income level 
prediction
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Data and Representation
Data sources: The United Nations Comtrade Database (UNCD), Kaggle

UNCD: Reporter-partner trade statistics 

● imports and exports
● trade value in USD

Kaggle: Countries profile

● financial 
● geographical
● income level
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Data and Representation

Table 2: summary of data features and representation
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Feature Notation Size Representation

nodes 111 countries 

Node features 38 ie. population

Edges 476 trade indicator

Edge weights 476 net trade value 
(USD)

Node labels 4 Income levels



Tasks

● Trade partner prediction:
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Tasks

● Income level prediction:
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Tasks and Exp’tal setup
● Country Classification: Predicting the income levels of countries 

○ Graph Convolutional Network (GCN)
○ Attention-based Graph Neural Networks (AGNN)
○ Graph Attention Network (GAT)
○ Chebyshev Convolution Networks (ChebNet)

● Trade Partner prediction: Predicting potential trade partners in trade graph

○ Graph Autoencoder (GAE)
○ Variational Graph Autoencoder (VGAE)
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Tasks and Exp’tal setup

● Baselines -

○  Multilayer perceptron (MLP)

○ Logistic regression
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               Results

Table 3: Mean node classification results, 1200 epochs, 100 runs

Table 4: Results for link prediction task
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GCN ChebNet GAT AGNN Linear Logistic 
Reg

Test 
Accuracy

0.6812 0.6436 0.6158 0.6003 0.6491 0.5758

GAE VGAE

AUC 0.9840 0.9888

Average Precision 0.9835 0.9896



Results - Node classification

15Fig 1: Model performance on node classification averaged over 100 runs



Results - Link Prediction
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Fig 2: AUC and AP scores on reconstruction with (a) GAE   (b) VGAE



Conclusion
● Here, we encourage a graph representation learning approach to trade 

partner prediction and income level classification of countries.

● We use historical trade data to construct a graph for active trade relationship 
between countries.

● Up to 98% accuracy on predicting trading partners and 68% on income level 
classification

● One future direction is to consider a dynamic graph instead of a static one

○ How trade activities evolve with time -- temporal prediction of edges between countries

○ How income levels of countries change with time
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Thank You
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