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Overview

e Graph-structured data
e Graph Neural Networks
e Applications



Graphs




Graphs - Where we find them...
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Graphs

e Euclidean graph-data has regular/ periodic structure
o Eg. Images, videos, time series

e Discrete, Non-Euclidean data structure
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Graphs

e Euclidean graph-data has regular/ periodic structure
o Eg. Images, videos, time series

e Discrete, Non-Euclidean data structure
o Eg. social networks, molecular structure

Non-euclidean/
non-regular grid



Graphs

e Discrete, Non-Euclidean data structure

o Key features are;
o Nodes

o Node features



Graphs

e Discrete, Non-Euclidean data structure

e Key features are;
o Nodes
o Node features
o [Edges (directed or undirected)



Graphs

e Discrete, Non-Euclidean data structure

e Key features are;
o Nodes
Node features
Edges (directed or undirected)
Edge weights
Edge features
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Graphs

e Discrete, Non-Euclidean data structure

e Key features are;

Nodes

Node features

Edges (directed or undirected)
Edge weights

Edge features

Edge types etc

o O O O O O




Graphs - More Formally

A simple graph is given by: 6= (v, Xx,4,¢) (wﬂ
Where Yy — set of nodes/ vertices, X — node features X=
& — set of edges weights, A — Adjacency matrix \wnl

Assuming a real-valued feature matrix X for each node v € V

Adjacency Matrix - (01
1 0

A simple binary matrix - A= g (1)

11

Entry e;;is 1 if nodes are connected and O otherwise \0 0
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Knowledge Graphs
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Knowledge Graphs
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Fact triplets (h,7,t)— head
entity, relation, tail entity
Symmetry is critical (marriage
is symmetric, “is a capital of” is
not)

Usually incomplete — missing
links needs to be completed
We need embedding methods
to learn the KG structure and
to predict missing links



Main Downstream Tasks

e Node/ Graph Classification - Label nodes/entire graph that were not labeled
before in a typical semi-supervised setting

e Link Prediction - Predict links between nodes
e Node Clustering/ Community Detection - Detect clusters of nodes in graph

e Graph Generation - Generate a new graph



What we want

Priori: Learn Good Embeddings for better model
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Zachary’s Karate Club network:
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Jure Leskovec. Stanford CS224W: Analvsis of Networks. http://cs224w.stanford.edu




Fundamental Questions

Priori: Learn Good Embeddings for better model
How to encode the graph structure into machine learning models;

e Leveraging a node’s local or global neighbourhood structure into a feature
vector for node classification

e Encoding pairwise information between nodes for link prediction



Classical Rep. Approaches

e Transductive learning

e Random walks e No parameter sharing
e No feature learned
o DeepWalk representation

o Node2vec

o LINE (Large-scale Information Network Embeddings)

o HARP (Random-walk embeddings via graph pre-processing)
e Neighborhood autoencoder and aggregation

o Deep Neural Graph Representations (DNGR)

o  Structural Deep Network Embeddings (SDNE) etc.

Hamilton, 2018



Graph Neural Networks

1. Simply a family of deep learning/ neural sa o i
network methods applied on graphs z/ /
2. Many tricks and hacks in NN applies s .
e RelU activation I T s T
e Graph Pooling ’ Azl T ""m”
e Stacking layers for hierarchical feature
learning : ,. ;
e Negative Sampling SN IR

e Subsampling
3. Many idea “Message passing”



Graph Neural Networks

Graph Convolutional Networks
Graph Attention Networks
Graph Recurrent Networks
Graph Autoencoder

Variational Graph Autoencoder



Graph Convolutional Networks (GCN)

Kipf & Welling (ICLR 2017)

e Permutation invariance

e Weight shared between layers
e Linear complexity O(E)
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lllustration from Kipf’s slides



Graph Attention Networks

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
Yoshua Bengio

Pay attention to the most influential nodes

e Computes attention vector & that
weighs every neighboring node by
importance

exp (LeakyReLU ( Wh, ||Wh ))

g Dok eXP (LeakyReLU (é’T Wh.,i||Wh,;,,]>)



Graph Attention Networks

Pay attention to the most influential nodes

e Computes attention vector \alpha that
weighs every neighboring node by
importance

e Multi-head attention computes and
concatenates k independent attention
mechanisms.

e |If final layer, we average out

concat/avg




Encoder-Decoder model
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Applications



Graph Neural Networks for Social Recommendation

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin

Two parts graph;

wees User-to-item Interaction

""""""""" ) G e oo e user-item graph (Numbers
--------------- denotes rating)

e User-user social graph



Graph Neural Networks for Social Recommendation

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin

e . Separately model hidden state;
ol e User-item interaction - ltem
(Gervi] sl Aggregation (IA)

e User-user interaction - Social
aggregation (SA)

o . Feed concatenated state
L < Jy Eeraemenn | : :
] ";ig; 4 a —— representation from |A and SA into
Item Aggregation o Social Aggreg: - EEEEEEEEEEEEE H »
—E MLP and predict rating




Multi-Agent Game Abstraction via Graph Attention

Neural Network

Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, Yang Gao

3  Our Method

In this section, we propose a novel game abstraction ap-
proach based on two-stage attention mechanism (G2ANet).
Based on the mechanism, we propose two novel MARL al-
gorithms (GA-Comm and GA-AC).

G2ANet: Game Abstraction Based on Two-Stage
Attention

We construct the relationship between agents as a graph,
where each node represents a single agent, and all nodes are
connected in pairs by default. We define the graph as Agent-
Coordination Graph.

Coanm by aithes \o'lnm:

Acr Lolic Norwamrh

Figure 1: Game Abstraction based on two-stage attention
mechanism and Graph Neural Network (GNN).



Bilateral Trade Modeling with GNN

Kobby Panford-Quainoo, Avishek Joey Bose, Michael Defferrard

e Data -- Bilateral trade data, Countries Feature  Notation Size  Representation

profile information

e Tasks nodes )% [11  countries
o Node Classification node features X 38 population etcﬂ
m Predict income levels of countries -- High, edges A 476 trade indicator
Upper-middle, Lower-middle, Low edge weights ¢ 476 net trade val (USD)
o Link Prediction node labels ) 4 income group

m Predict if any two countries would trade



Others

GCap:Graph-based Automatic Image Captioning --- Jia-Yu Pan, Hyung-Jeong
Yang, Christos Faloutsos, Pinar Duygulu

MolGAN: An implicit generative model for small molecular graphs --- Nicola
De Cao Thomas Kipf

Convolutional Networks on Graphs for Learning Molecular Fingerprints -
David Duvenaud, Dougal Maclaurin, Jorge Aguilera-lparraguirre, Rafael Gomez-Bombarelli,
Timothy Hirzel, Alan Aspuru-Guzik, Ryan P. Adams



GNN Toolkits

Datasets:

Cora

Citeseer

PubMed

TU Dataset

Protein interaction dataset

Python Libraries

e DeepGraph Library (DGL)
e Pytorch-Geometric
e Pytorch-BigGraph

Open Graph Benchmark:

A collection of datasets, benchmarks and
evaluators for machine learning on graphs

https.//ogb.stanford.edu/
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